PANDA: Protein function prediction using domain architecture and affinity propagation
نویسندگان
چکیده
منابع مشابه
Protein Function Prediction using Phylogenomics, Domain Architecture Analysis, Data Integration, and Lexical Scoring
متن کامل
Protein Interaction Networks: Protein Domain Interaction and Protein Function Prediction
Most of a cell’s functional processes involve interactions among proteins, and a key challenge in proteomics is to better understand these complex interaction graphs at a systems level. Because of their importance in development and disease, protein-protein interactions (PPIs) have been the subject of intense research in recent years. In addition, a greater understanding of PPIs can be achieved...
متن کاملCScore: a simple yet effective scoring function for protein-ligand binding affinity prediction using modified CMAC learning architecture.
Protein-ligand docking is a computational method to identify the binding mode of a ligand and a target protein, and predict the corresponding binding affinity using a scoring function. This method has great value in drug design. After decades of development, scoring functions nowadays typically can identify the true binding mode, but the prediction of binding affinity still remains a major prob...
متن کاملThe SBASE domain sequence resource, release 12: prediction of protein domain-architecture using support vector machines
SBASE (http://www.icgeb.trieste.it/sbase) is an online resource designed to facilitate the detection of domain homologies based on sequence database search. The present release of the SBASE A library of protein domain sequences contains 972,397 protein sequence segments annotated by structure, function, ligand-binding or cellular topology, clustered into 8547 domain groups. SBASE B contains 169...
متن کاملSemi-supervised Protein Function Prediction via Sequential Linear Neighborhood Propagation
Predicting protein function is one of the most challenging problems of the post-genomic era. The development of experimental methods for genome scale analysis of molecular interaction networks has provided new approaches to inferring protein function. In this paper we introduce a new graph-based semi-supervised classification algorithm Sequential Linear Neighborhood Propagation (SLNP), which ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2018
ISSN: 2045-2322
DOI: 10.1038/s41598-018-21849-1